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A Field-Space Conformal Solution Method 1 

J. R. Fox 2 and T. S. Storvick 2'3 

We propose a radical extension of the principle of corresponding states to 
mixtures. All previous methods of which we are aware are based upon the 
application of "mixing rules" which are explicit in the compositions of the resul- 
tant, or target, mixture. In the present development these relations are functions 
of field variables alone, specifically the activities of the reference system. This has 
a profound effect upon the basic machinery of the transformations. For exam- 
ple, when the new method is used to map the properties of a binary fluid 
mixture onto those of a pure fluid (and in contrast to the description of a 
mixture by one-fluid theory with van der Waals mixing rules), the dew-bubble- 
point surface of the mixture is mapped onto the vapor pressure curve of the 
pure fluid, and the critical line of the mixture is mapped onto the critical point 
of the pure fluid. Thus, there is no separate "pseudocritical" locus. The principal 
technical advantage of such a development is numerical; calculation of the loca- 
tion of vapor-liquid coexistence and critical manifolds is enormously simplified. 
The most important theoretical aspect associated with the new method is that 
if the reference system is described by an equation of state which obeys the 
critical scaling laws, then the entire critical manifold of the target system will 
also exhibit critical scaling. 
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dynamic transformations as the basis of a new method for describing the 
properties of fluid mixtures. In this paper we present two new primitive 
transformations and construct a "one-fluid" version of the theory; that is, 
we describe the properties of mixtures through reference to the properties 
of a pure fluid. 

The present development is meant to be directly compared to one-fluid 
conformal-solution theories of conventional form and, in particular, to the 
van der Waals one-fluid theory. We demonstrate that the new method can 
satisfy the simplest useful technical test: to fit the liquid-vapor phase 
equilibria of some "conformal" binary mixtures. 

The motivation for our work comes from a number of diverse 
considerations; primary among them is an apparent fault in the structure 
of corresponding-states theories as they are presently implemented. This 
fault manifests itself when the reference pure fluid or fluids used in the 
corresponding states description of a mixture is of nonclassical type, i.e., 
displays scaling behavior in the region around the critical point. 

In Fig. 1, the typical mapping between reference pure fluid and target 
binary mixture is indicated schematically. States on the dew- and bubble- 
point manifolds of the mixture (here shown at a single representative com- 
position) are mapped by the transformation to states in the one-phase 
region of the reference fluid's phase diagram. The pure-fluid critical point 
and the region around it are mapped by the reverse transformation into the 
physically inaccessible interior of the mixture two-phase region. Thus the 
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Fig. 1. Mapping of states between pure-fluid reference system and 
target mixture (shown at one representative composition). All dew- and 
bubble-state points, including the critical point of the mixture, are 
mapped into the one-phase region of the pure-fluid reference system. 
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peculiar scaling behavior of thermodynamic quantities in the neighborhood 
of the critical point of a pure fluid will certainly not be reflected as an 
appropriate mixture critical scaling behavior. In fact the nonclassical aspect 
of the reference system is, excepting certain special cases, completely lost, 
and thermodynamic behavior near the critical line of the mixture is entirely 
classical. 

A further and related difficulty involved in this marriage of nonclassi- 
cal and corresponding-states structures is apparent when one considers the 
predicted shape of the critical line (in the case of a binary mixture) in the 
dilute regime approaching the critical point of one of the component pure 
fluids. As Levelt Sengers et  al. have shown [2], the termination of a classi- 
cal critical line upon a pure-fluid critical point, described by this structure 
to be fully nonclassical, results in an anomalous shape for that critical line 
which stands in sharp contrast to the experimental evidence. Levelt Sengers 
et  al. predict that this anomaly will occur even when the reference system 
is classical, provided that the behavior in the critical region is sufficiently 
like that of a scaling-law system. 

We deduce that these difficulties stem from the structure of the corre- 
sponding-states transformation, relying in part upon the existence of a 
separate body of theory which yields a transformation mechanism free of 
these problems. We refer to this second class of transformations as "field- 
space corresponding-states" transformations. 

The mapping of target mixture states onto pure-fluid reference states 
characteristic of a field-space one-fluid transformation is indicated 
schematically in Fig. 2. In this case the states along the dew- and bubble- 
point curves (shown again at a representative constant-composition section 
of the mixture) map onto the vapor-pressure curve of the pure fluid, and 
the critical point of the mixture maps onto the critical point of the pure 
fluid. A region around the critical point of the pure fluid is mapped by the 
reverse transformation into a region of one-phase points about the critical 
point of the mixture. Clearly, in this type of mapping, the scaling behavior 
of a nonclassical pure-fluid reference system will be manifested, in some 
form, near the critical line of the mixture. 

The principal defining property that we associate with field-space 
transformations is that the fields of the target system are smooth (analytic) 
and convexity-preserving functions of the independent fields of the 
reference system. The term "fields" is used, in the sense introduced by 
Griffiths and Wheeler [3], to mean those intensive thermodynamic 
variables which are always equal in coexisting phases, such as the pressure, 
temperature, chemical potentials, and activities. The remainder of the 
intensive variables, for example, the molar densities, the entropy density, 
and the molar energy, are called "densities" and may be recognized as 
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Fig. 2. Mapping characteristic of a field-space transformation. The criti- 
cal point (line) of the mixture is mapped onto the critical point of the 
reference pure fluid and the dew-bubble curve (surface) is mapped onto 
the pure fluid vapor-pressure curve. 

ratios of extensive quantities, and therefore generally take different values 
in coexisting phases. By "convexity preserving" we mean that the thermo- 
dynamic stability of a state point of the reference system, which may be 
expressed mathematically as convexity relations among the field variables, 
is preserved at the transformed point in the target system. 

As indicated in Ref. 1 there are a number of exact calculations in 
statistical mechanics that result in transformations of the field-space type 
and also describe mixtures in terms of pure-fluid reference systems. The 
primary examples are the decorated lattice-gas transformations [4, 5] 
which, in some implementations, map the properties of energetically simple 
fluid mixtures onto the properties of the one-component lattice gas or Ising 
model. 

By purely thermodynamic construction, Leung and Griffiths [-6] have 
developed a field-space "two-fluid" model; that is, the mixture properties 
are smoothly interpolated from a reference system composed of fitted 
fundamental equations for each of the pure fluid components. Moldover 
and Gallagher [7]  and, more recently, Rainwater et al. [8, 9] have used 
flexible modifications of this model to correlate the liquid-vapor equilibria 
of a large number of binary mixtures in a range from about half of the criti- 
cal pressure of the more volatile component up to the critical line. This 
model, which has always been used with nonclassical reference functions, 
has proved to be a very valuable vehicle for the elucidation of nonclassical 
critical effects in mixtures. The primary limitation of the Leung-Griffiths 
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model is that it takes the form of an expansion about the critical line of the 
mixture and therefore can describe only a part of the phase diagram. 

While we think that neither the decorated lattice-gas calculations nor 
the Leung-Griffiths approach can be generalized into an acceptable 
replacement theory for the van der Waals one-fluid theory and its 
derivatives, the fact of an exact calculation in the one case and apparently 
excellent correlative ability in the other have encouraged us to pursue a 
separate path toward a field-space transform method. 

2. ONE-FLUID FIELD-SPACE TRANSFORM 

Two pure fluids are said to be conformal if their interparticle potential 
functions differ only by two scale factors, one a ratio of potential energies 
and the other a ratio of interaction lengths. A statistical-mechanical treat- 
ment [-10] (which invokes the usual approximation of independent degrees 
of freedom) shows that volumetric behavior of one of the fluids may be 
expressed through reference only to the volumetric behavior of the other 
fluid.This is typically expressed as a relation between pressures, 

p'(p', T ' ) =  (f/h) p(p, T); p = hp'; T =  T ' / f  (1) 

where p' is the pressure, T' the temperature, and p' the molar density of 
the "target" fluid. These quantities are expressed as functions of the 
"reference" fluid pressure p, temperature T, density p, and constant scale 
factors f and h. 

The expressions for a binary mixture, in the one-fluid form of the 
conformal solution theory, are 

P'(P'I, P'2, T')  = (f /h)  p(p/T);  p = h(p'~ + P'2) = hp'; T =  T ' / f  (2) 

where p' is now the pressure, p', and p~ are the component molar densities 
of the target mixture, and the scale factors f and h are simple functions of 
X'l =P'I/(P'I + P'2). Various approximations have been used to specify the 
forms of f and h; Ref. 11 provides a review of popular forms. This structure 
embodies the idea of van der Waals that a binary mixture at constant 
composition has the properties of a pure fluid. 

In the case of the field-space variant of the same theory, the equivalent 
expressions are 

p'(z'l, z'2, T ' ) =  (f/h) p(z, T); z=-z'  1 +z~; T =  T ' / f  (3) 

where z is the activity of the pure fluid, and z'l and z~ are the activities of 
the components of the binary mixture. The scale factors f and h are simple 
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functions of ~7 =- z'l/(z'~ + z'2). This form embodies the hypothesis of Griffiths 
and Wheeler [3] that a binary mixture at a constant field (for example, at 
constant ~7) has the properties of a pure fluid. 

In order to calculate the target densities it is convenient to introduce 
the Gibbs-Duhem equation appropriate to this choice of variables: 

i=1 Zi 
where s is the internal energy density U/V, m the number of chemical com- 
ponents, and R the gas constant. The calculation of target molar densities 
Pl and P2 proceeds directly from their definitions: 

~; (@_Z') z', (~(iplh)) 
Pi =~-~\Oz,  j,2,v, =RT' _ aZ ' l  Jz'2, T '  

- RT'  Z'~ - - ~  Oz] ,,~ 

cOz O T 
-~fI( ~Z )T (~Z-~I)z'2-t-( ~T)z (~--~z])z~, T, 1 } 

_-~', ,re/~s) _sp/~h) 
n T '  thtOz'~):,~ h~\Oz'~)z,~ 

If we define f , -  df/@ and h . -  dh/@, the resulting expression for the 
density is 

1( V p h. e_f_f.]RT f j } p,, =z ?p- L ~ - +  (.-.~) (6) 

A similar calculation for p~ yields 

p , = ~ { ( l _ t l ) p + [  p h. 

and thus the total density of the target system is 

p'=p'~ + p ;  =plh (8) 

The relation for the target composition variable x'l is then 

, p', f p h. u f . ]  
x, = 7=,7_ L~-z-+ ~ T j  (,~_,72) (9) 
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where u is the molar internal energy U/n of the reference system. The 
remaining independent density, the internal energy density, is also easily 
calculated: 

r'+ 

/ \ \  (fr) /z, ,i2 

=h k V/z =-h - -  (10) 

f u' u 
~e '=  e ~ R T  , RT (11) 

3. IMPLEMENTATION WITH A CUBIC EQUATION OF STATE 

The primary technical application for a one-fluid theory is in the 
correlation, and ultimately in the prediction, of liquid-vapor equilibria in 
mixtures. Fortunately, it is also in that application that the field-space 
transformations, due to their structure, develop important advantages over 
conventional methods. As is perhaps clear from the mapping indicated in 
Fig. 2, the method describes all mixture phase equilibria through reference 
to the properties of a pure fluid along its vapor pressure curve. Hence only 
a correlation or tabulation of certain saturation properties of the reference 
system is required, rather than a complete description of the one-phase 
region, as is the usual case. Second, since all the reference states lie on a 
one-dimensional manifold, rather than on a two-dimensional manifold as 
in the conventional theory, many types of numerical calculations, which 
involve searching for solutions over states of the reference system, can in 
principle be much simpler in the field-space case. The location of the criti- 
cal line is made particularly simple since it maps to a single reference state. 

These advantages would be lost, however, if no implementation of the 
method which correlates mixtures of interest could be found. In this 
section, we show for the functions f(~/) and h(q) preliminary choices which 
involve one adjustable parameter. We find it necessary to introduce a 
second adjustable mixture parameter elsewhere. We choose for a reference 
system the Berthelot equation of state, together with a compatible choice 
for the molar energy. We regard the Berthelot form as the simplest 
equation of state with an acceptable vapor pressure curve; it is 

pRT a 2 
P = l - p ~  TP (12) 

u=CRT_fo~T(OppT ~ _p]dpT ~_2ap (13) [_ \ / .  , = C R T -  
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where a, b, and C are constants. We choose for the functions f(~/) and h(t/) 
the inverse polynomials 

f(rl) = (fo +fl~/)  -1 (14) 

h(t/) = (ho -k hat/+ h2r/2) -1 (15) 

with the hi and the fe all constants. Since a and b may be adjusted to fit 
the Berthelot critical pressure and temperature to those of the pure fluid 2, 
the constants f0 and h o are redundant and we set them equal to 1. Two 
additional constants (the sums l + h 1 + h  2 and l + f l  ) are fixed by 
constraining the other end of the critical line to terminate at the critical 
temperature and pressure of pure component 1. That leaves only the heat- 
capacity-like parameter C and the binary-interaction parameter h2 as free 
parameters to be determined by the properties of the mixture. The shape of 
the critical line in the pressure-temperature plane is determined by h2, with 
h2 = 0 a straight line. 

Figures 3, 4, and 5 are fits of the dew-bubble surface, in the p - T -  x 
space, of n-butane+n-pentane,  n-butane+n-hexane,  and n-butane+ 
n-octane, respectively. The experimental data are from the work of Kay 
et al. [12, 13]. In a companion paper [14] we test the effect of using 
improved reference equations of state and show the density behavior of 
these same systems. 
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Fig. 3. The pTx diagram for the system n-butane+n-pentane 
fitted with the parameters h2 = -0.104 and C =  4.3. The data are 
reduced by the critical pressure and temperature of the component 
with higher critical temperature (in our notation, component 2). 
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Fig. 4. The p Tx diagram for the system n-butane +n-hexane 
fitted with the parameters h 2 = -0 .55 and C=4.95. 
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The pTx diagram for the system n-butane+n-octane 
fitted with the parameters ha = - 1.842 and C =  5.1. 
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4. CONCLUDING DISCUSSION AND FUTURE DIRECTION 

The transformation method we have presented in this report may be 
useful in high-pressure liquid-vapor equilibrium calculations in its present 
form, but we hope to significantly improve it in the near-future. While we 
have concentrated here on implementation and application of the method, 
there are still a number of theoretical questions regarding the structure of 
the transformation which ultimately must be addressed. Readers familiar 
with the statistical-mechanical basis of the conformal solution theory will 
no doubt be disturbed at the presence of the ideal-gas heat capacity 
parameter C in our definition of the internal energy, since it is not a con- 
figurational property. It is, however, an important fitting parameter, and 
although we might have contrived to hide its relationship with the energy 
in various ways, we cannot now do reasonable fitting without it. During 
the preparation of this report, we discovered that if the relationship 
between reference and target activities is defined as z = h(z'l + -2) instead of 
the form we have been using, a number of annoying problems with the 
low-density limit disappear. It will certainly be important to implement this 
form of the transformation, and we hope to be able to do so using only the 
configurational properties of the reference system. 

The principal technical problem is the failure to predict accurately 
liquid densities, as indicated in the companion paper [14]. This problem 
is probably due to the transformation structure rather than to our 
implementation, with the fact that the critical compressibility factor is con- 
strained to be constant along the entire critical line being a related 
symptom. We believe that this problem can be corrected using a version of 
the background-transformation technique developed in Ref. 1. 

The thermodynamic transformation introduced in this report may be 
decomposed into two primitive transformations; one scales the tem- 
perature, and the other scales the pressure-temperature ratio. The total 
transformation is then constructed by serially applying the primitive trans- 
formations in either order (that is, they are commutative). Reference 1 
introduced six other primitive transformations. We think that this factoring 
into primitives may be the most useful way to both use and develop these 
methods, and we plan to follow this approach in our future work. 
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